Geothermal Energy for Refrigeration and Air Conditioning, Sustainable Development, and the Environment
Omer A
Published on: 2021-06-15
Abstract
Geothermal heat pumps (GSHPs), or direct expansion (DX) ground source heat pumps, are a highly efficient renewable energy technology, which uses the earth, groundwater or surface water as a heat source when operating in heating mode or as a heat sink when operating in a cooling mode. It is receiving increasing interest because of its potential to decrease primary energy consumption and thus reduce emissions of the greenhouse gases (GHGs). The main concept of this technology is that it uses the lower temperature of the ground (approximately <32°C), which remains relatively stable throughout the year, to provide space heating, cooling and domestic hot water inside the building area. The main goal of this study was to stimulate the uptake of the GSHPs. Some emphasis has recently been put on the utilisation of the ambient energy from ground source and other renewable energy sources in order to stimulate alternative energy sources for heating and cooling of buildings. Exploitation of renewable energy sources and particularly ground heat in buildings can significantly contribute towards reducing dependency on fossil fuels. This section highlights the potential energy saving that could be achieved through use of ground energy source. This study highlights the energy problem and the possible saving that can be achieved through the use of ground sources energy. Also, this study clarifies the background of the study, highlights the potential energy saving that could be achieved through use of ground energy source and describes the objectives, approach and scope of the thesis. It also focuses on the optimisation and improvement of the operation conditions of the heat cycles and performances of the GSHP. It was recommended that GSHPs are extendable to more comprehensive applications combined with the ground heat exchanger in foundation piles and the seasonal thermal energy storage from solar thermal collectors. Therefore, an approach is needed to integrate renewable energies in a way to meet high building performance. However, because renewable energy sources are stochastic and geographically diffuse, their ability to match demand is determined either by the utilisation of a greater capture area than that occupied by the community to be supplied or the reduction of the community’s energy demands to a level commensuratable with the locally available renewable resources.