Beam Quality Measurement and Verification of a C-Series Linear Accelerator

Barrington Brevitt

Published on: 2018-12-28

Abstract

Objectives: To conduct beam quality measurements and verification for treatment plan quality assurance in radiation therapy.

Methodology: An IBA Pharma type ion chamber (FC65-G) and electrometer (IBA Dose 2) were used to obtain ionization charges for an 18MV and a 6MV beam from a C-Series linear accelerator. These measurements were taken using a 1D water phantom, dimensions 40cm* 35cm*34.5 cm at a source to detector distance (SDD) of 100cm with the chamber 10cm beneath the water surface. The “K” (quality conversion factor) was calculated using the TPR20,10 method. Two sets of measurements were taken at a depth of 20 cm and 10 cm beneath the water surface at a source to detector distance of 100cm. Three measurements were taken for both photon energies at polarities of +300, -300 and +100 on the electrometer.

Results: Ka values were calculated using the TPR20, 10 principles outlined in the TRS 135 protocol. The Ka value for the 6MV photon was determined to be 0.996 Gy while that for the 18MV was 0.973 Gy. These Ka values were then used to determine the tabulated percentage depth dose (PDD) for the photon energies. The tabulated PDD’s were 0.665 and 0.788 for the 6MV and 18MV beam respectively. From equation 2, Dw (10cm) for 6MV photon was calculated to be 0.68 Gy and that for the 18 MV photon was 0.81 Gy. The absorbed dose of the treatment unit at Dmax (Eq. 3) was calculated to be; (18MV) 1.03 Gy and (6MV) 1.03 Gy.

Conclusion: Due to the complexity of photon production and interactions and the need to precisely treat a tumour volume, beam quality verification should be conducted on a daily basis before treatment of patients.